128 research outputs found

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space

    Temporal Attention-Gated Model for Robust Sequence Classification

    Full text link
    Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention models and gated recurrent networks to better deal with noisy or unsegmented sequences. Specifically, we extend the concept of attention model to measure the relevance of each observation (time step) of a sequence. We then use a novel gated recurrent network to learn the hidden representation for the final prediction. An important advantage of our approach is interpretability since the temporal attention weights provide a meaningful value for the salience of each time step in the sequence. We demonstrate the merits of our TAGM approach, both for prediction accuracy and interpretability, on three different tasks: spoken digit recognition, text-based sentiment analysis and visual event recognition.Comment: Accepted by CVPR 201
    corecore